Cross-discourse Development of Supervised Sentiment Analysis in the Clinical Domain
نویسندگان
چکیده
Current approaches to sentiment analysis assume that the sole discourse function of sentiment-bearing texts is expressivity. However, the persuasive discourse function also utilises expressive language. In this work, we present the results of training supervised classifiers on a new corpus of clinical texts that contain documents with an expressive discourse function, and we test the learned models on a subset of the same corpus containing persuasive texts. The results of this indicate that despite the difference in discourse function, the learned models perform favourably.
منابع مشابه
A Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملReNew: A Semi-Supervised Framework for Generating Domain-Specific Lexicons and Sentiment Analysis
The sentiment captured in opinionated text provides interesting and valuable information for social media services. However, due to the complexity and diversity of linguistic representations, it is challenging to build a framework that accurately extracts such sentiment. We propose a semi-supervised framework for generating a domain-specific sentiment lexicon and inferring sentiments at the seg...
متن کاملGraph-based approaches for semi-supervised and cross-domain sentiment analysis
The rapid development of Internet technologies has resulted in a sharp increase in the number of Internet users who create content online. Usergenerated content often represents people’s opinions, thoughts, speculations and sentiments and is a valuable source of information for companies, organisations and individual users. This has led to the emergence of the field of sentiment analysis, which...
متن کاملSemi-supervised vs. Cross-domain Graphs for Sentiment Analysis
The lack of labeled data always poses challenges for tasks where machine learning is involved. Semi-supervised and cross-domain approaches represent the most common ways to overcome this difficulty. Graph-based algorithms have been widely studied during the last decade and have proved to be very effective at solving the data limitation problem. This paper explores one of the most popular stateo...
متن کاملیک چارچوب نیمهنظارتی مبتنی بر لغتنامه وفقی خودساخت جهت تحلیل نظرات فارسی
With the appearance of Web 2.0 and 3.0, users’ contribution to WWW has created a huge amount of valuable expressed opinions. Considering the difficulty or impossibility of manually analyzing such big data, sentiment analysis, as a branch of natural language processing, has been highly considered. Despite the other (popular) languages, a limited number of research studies have been conducted in ...
متن کامل